CAR DAMAGE DETECTOR

Automated Car Damage Classification from Images

Presented by: Vaibhav Garg



PROBLEM STATEMENT

e Assessing car damage from images is challenging due to variations in lighting, angles, and
vehicle positions, making manual inspection subjective and inconsistent.

e Traditional visual assessments by inspectors are time-consuming, prone to human error,
and lack standardization, which can delay claims processing or resale evaluations.

e Thereis a critical need for an automated, objective system that can classify vehicle
damage reliably and consistently across diverse car images.

e A deep learning-based approach enables scalable, fast, and repeatable assessments,
reducing processing times and improving accuracy in estimating repair costs or validating
iInsurance claims.



PROJECT OBJECTIVES

e Automatically classify car damage into one of six categories: Front Normal, Front
Breakage, Front Crushed, Rear Normal, Rear Breakage, Rear Crushed.

e Achieve at least 75% accuracy on a validation dataset of labeled car images.

e Provide an interactive Streamlit web app allowing users to upload an image and instantly
view the predicted damage class.

e Support fair and transparent claim settlements by providing objective, evidence-based
damage assessments directly from uploaded images.



DATASET OVERVIEW

e The dataset consists of approximately 2300 labeled images of vehicles, carefully collected to
capture various types of front and rear damage scenarios.

e |[mages are distributed across six predefined damage categories to ensure balanced learning:
o Front Breakage (FB): 500 images
o Front Crushed (FC): 400 images
o Front Normal (FN): 500 images
o Rear Breakage (RB): 300 images
o Rear Crushed (RC): 300 images
o Rear Normal (RN): 300 images

e The dataset includes images taken under different lighting conditions, angles, and
backgrounds, with a focus on third-quarter front or rear views to mimic real-world scenarios
encountered during insurance inspections or resale evaluations.



DATA PREPROCESSING

 Image Transformations (Data Augmentation & Standardization)

o RandomHorizontalFlip(): Introduces horizontal flips to improve model robustness and
generalization to different car orientations.

o RandomRotation(10): Rotates images randomly up to 10 degrees to add rotational invariance
and simulate real-world camera angles.

o Colorlitter(brightness=0.2, contrast=0.2): Varies brightness and contrast to mimic diverse
lighting conditions and enhance model resilience.

o Resize((224, 224)): Rescales all images to a consistent 224%x224 resolution required by the
CNN architecture.

o ToTensor(): Converts images into PyTorch tensors, scaling pixel values to the [0,1] range for
numerical stability.

o Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]): Standardizes pixel values
using ImageNet statistics —critical when leveraging pre-trained CNNs.



e Data Splitting

o Training Set: 75% of the dataset (1,725 images) used to optimize model weights during
training.

o Validation Set: 25% of the dataset (575 images) reserved to evaluate model performance and
detect overfitting.

e Data Loaders

o DatalLoader Objects: Created for both the training and validation datasets to efficiently load
mini-batches (batch size 32).

o Features: Include shuffling of training data to improve model generalization and multi-process
data loading for faster throughput.



MODEL DEVELOPMENT & OPTIMIZATION

e Baseline CNN Model

o Started with a simple CNN architecture.
o Achieved an initial accuracy of 57.74%, providing a performance benchmark for further
Improvements.

e Regularization Techniques Applied

o |Introduced Batch Normalization to stabilize and accelerate training.
o Added Dropout Regularization to reduce overfitting.

o |Incorporated L2 Regularization to improve generalization.

o Together, these boosted accuracy to 58.60%.

o EfficientNet-BO Implementation
o Transitioned to a more advanced EfficientNet-BO model.

o Leveraged compound scaling to optimize parameters efficiently.
o Resulted in a notable performance improvement with 65.38% accuracy.



e Adoption of ResNet50 Architecture

o Adopted the deeper, residual-based ResNet50 network.
o Enabled better learning of complex damage patterns.
o Significantly increased accuracy to 76.70%.

e Hyperparameter Tuning with Optuna
o Performed extensive tuning of learning rate and dropout probability.

o Used the Optuna framework for efficient hyperparameter search.
o Final ResNet50 model achieved 79.48% accuracy, representing the best-performing solution.



MODEL EVALUATION

e Classification Report

o Generated precision, recall, and F1-score for each damage class.

o Report included overall accuracy > 75% after hyperparameter tuning, meeting the project
objective.

o Demonstrated substantial improvement over initial baseline models.

precision recall fl-score support

% .73 B.93 B.82 119

1 8.82 B.69 8.75 98

2 8.96 B.81 B.88 122

3 8.84 B.65 8.74 81

4 @./8 B.71 @.71 1%

5 8.75 B.92 .83 75
accuracy B.79 575
macro avg 8.806 B.J79 B.759 575

welghted avg 8.81 B.79 8.79 575



e Confusion Matrix

o Visualized actual vs. predicted labels across six classes.
o |dentified patterns of misclassification between similar damage classes.

Confusion Matrix for Vehicle Damage Classification

F_Breakage 1 0 0 0 100
F Crushed -
- 80
< F.Normalq 13
E 60
w
=
F R Breakage-{ 1
- 40
R_Crushed - 1
- 20
R Normalq{ O
. 0
e [ A 2 S N
2 ¥ é@ 2> N &
& & & & S
< s 2 %% < Q-? Qs A

Predicted label



STREAMLIT APP INTEGRATION

e Developed an interactive web application using Streamlit for real-time car damage classification.
e |Integrated the trained ResNet50 model and preprocessing for seamless predictions.

e Allows users to upload a car image (preferably third-quarter front or rear view) directly through
the app’s intuitive interface.

e Onclicking “Predict Damage Class,” the app provides:
o Predicted damage category (e.g., Front Breakage, Rear Normal).

o Visual display of the uploaded image alongside the prediction.

e Handles all preprocessing within the app (resizing, normalization) to ensure consistent and
reliable model inference.

e Deployed the app on Streamlit Cloud (streamlit.io) for public access.

e Designed for business and non-technical users (e.g., insurers, fleet managers) to enable quick,
consistent, and objective car assessments.



USER INTERACTION PREVIEW

#= Upload a vehicle image:-

Choose a wehicle image [(JPG/PHNG)

@) Drag and drop file here

Limit 200ME por

[ rB_12jpg 2«

® Predict Damage Class

Prediction complete!

#% Predicted Damage Class: Rear Breakage

«#% Car Damage Detector

Browse files




PROJECT SUMMARY

Built a deep learning system to detect and classify car damage from images into six categories:
Front/Rear - Normal, Breakage, Crushed.

Prepared a dataset of 2300 images with augmentations for better generalization.

Split dataset into 75% training and 25% validation sets, ensuring balanced class representation
for accurate evaluation.

Trained baseline CNN, EfficientNet-B0O, and ResNet50 with batch norm, dropout, and L2; tuned
ResNet50 with Optuna, achieving 79.48% final accuracy.

Evaluated results using classification reports and confusion matrices, identifying key
misclassification patterns.

Created a Streamlit app for real-time car damage classification from uploaded images.

Live App: https://vaibhav-project-car-damage-detector.streamlit.app/

GitHub: https://github.com/vaibhavgarg2004/Car-Damage-Detector



https://vaibhav-project-car-damage-detector.streamlit.app/
https://github.com/vaibhavgarg2004/Car-Damage-Detector

THANK YOU




